Creeaza.com - informatii profesionale despre


Simplitatea lucrurilor complicate - Referate profesionale unice
Acasa » referate » fizica
Ecuatia macroscopica a miscarii fluidelor perfecte. Teorema impulsului

Ecuatia macroscopica a miscarii fluidelor perfecte. Teorema impulsului




Ecuatia macroscopica a miscarii fluidelor perfecte. Teorema impulsului

Prin integrarea ecuatiei (5.2) pe un volum V, marginit de o suprafata S de arie A, se obtine ecuatia macroscopica a miscarii, care exprima teorema propriu-zisa a impulsului.

Multiplicand ecuatia (5.2) cu  dV si integrand-o pe volumul V se obtine

(5.5)

Impulsul fluidului din volumul V este

(5.6)

deci membrul stang al ecuatiei (5.5) reprezinta variatia in timp a impulsului masei de fluid din volumul V, . Pe de alta parte, se poate scrie

si tinand seama ca, din ecuatia (4.29), se poate inlocui cu , expresia de mai sus devine

(5.7)

Inlocuind relatia (5.7) in membrul stang al ecuatiei (5.5), rezulta egalitatea

unde s-a transformat integrala de volum in integrala de suprafata prin folosirea teoremei lui Gauss, considerand ca normala este orientata de la exteriorul catre interiorul elementului de volum studiat.

Ca urmare, se poate scrie

(5.8)

Cele doua integrale din membrul drept al ecuatiei (5.5) pot fi scrise sub forma

unde s-a tinut seama, pentru prima egalitate, ca acceleratia a campului fortelor masice este egala, in camp gravitational, cu acceleratia gravitationala , iar pentru cea de a doua, ca presiunea are directia normalei , dar sens contrar. Astfel, ecuatia (5.5) devine



(5.10)

Ecuatia (5.10) reprezinta ecuatia macroscopica a miscarii fluidelor perfecte si exprima teorema impulsului, enuntata astfel: variatia in timp a impulsului masei de fluid care ocupa volumul V este egala cu suma dintre forta de greutate si fortele de presiune pe suprafata S care margineste domeniul de control cu volumul V.

Figura 5.2. Schema deducerii teoremei impulsului pentru un tub de curent

In cazul unui tub de curent (figura 5.2), aria suprafetei de control se compune din ariile suprafetelor de intrare A , de iesire A , respectiv laterala Al ale tubului. Indexand cu 1, 2 valorile medii ale marimilor in sectiunile de intrare, respectiv de iesire, ecuatia (5.10) imbraca forma

unde al doilea termen din prima egalitate a fost trecut, cu semn schimbat, in a doua egalitate. Stiind ca

unde este forta de presiune pe suprafata laterala a tubului de curent, relatia de mai sus devine

(5.11)

Daca miscarea este stationara, membrul stang al ecuatiei (5.11) este nul, iar daca fluidul este incompresibil 1 = 2 =  si astfel ecuatia (5.11) se reduce la forma

(5.12)

in care s-a tinut seama de ecuatia continuitatii (4.34) si s-a inlocuit rezultanta presiunilor suprafetei tubulare asupra lichidului cu actiunea lichidului asupra suprafetei, potrivit principiului actiunii si reactiunii, exprimat sub forma . Forta se numeste forta de impuls sau reactiunea impulsului.

Ecuatia (5.12) exprima teorema impulsului pentru un tub de curent de fluid incompresibil aflat in miscare stationara. Cu ajutorul ei se pot determina: forta de impact a jeturilor asupra peretilor, forta de impuls a fluidului aflat in miscare asupra unei conducte curbe, pierderea locala de energie provocata de variatia brusca a sectiunii unei conducte etc.






Politica de confidentialitate







creeaza logo.com Copyright © 2024 - Toate drepturile rezervate.
Toate documentele au caracter informativ cu scop educational.


Comentarii literare

ALEXANDRU LAPUSNEANUL COMENTARIUL NUVELEI
Amintiri din copilarie de Ion Creanga comentariu
Baltagul - Mihail Sadoveanu - comentariu
BASMUL POPULAR PRASLEA CEL VOINIC SI MERELE DE AUR - comentariu

Personaje din literatura

Baltagul caracterizarea personajelor
Caracterizare Alexandru Lapusneanul
Caracterizarea lui Gavilescu
Caracterizarea personajelor negative din basmul

Tehnica si mecanica

Cuplaje - definitii. notatii. exemple. repere istorice.
Actionare macara
Reprezentarea si cotarea filetelor

Economie

Criza financiara forteaza grupurile din industria siderurgica sa-si reduca productia si sa amane investitii
Metode de evaluare bazate pe venituri (metode de evaluare financiare)
Indicatori Macroeconomici

Geografie

Turismul pe terra
Vulcanii Și mediul
Padurile pe terra si industrializarea lemnului



Miscarea Hagen-Poiseuille
Lucrul pV
Forma pulsului generat de detectorii cu semiconductori
Ecuatia macroscopica a miscarii fluidelor perfecte. Teorema impulsului
Energia mecanica si conservarea acesteia
Materia - Starile materiei
Legea de racire a corpurilor
Caracterizarea generala a proceselor de interactie a radiatiei laser cu suprafetele metalice



Termeni si conditii
Contact
Creeaza si tu