Creeaza.com - informatii profesionale despre


Cunostinta va deschide lumea intelepciunii - Referate profesionale unice
Acasa » referate » fizica
Caldura si capacitatea calorica

Caldura si capacitatea calorica




Caldura si capacitatea calorica

Daca vom adauga caldura unei probe dintr-un material adesea temperatura acestuia creste. (Daca   suntem cumva la temperatura de modificare de stare, de exemplu gheata in apa, temperatura nu se va modifica si va determina doar topirea ghetii.) La distanta de punctul de modificare de faza, orice aport de temperatura va determina intotdeauna o crestere a temperaturii sistemului. Valoarea cu care creste temperatura depinde de cat de multa caldura a fost oferita sistemului, marimii probei, de temperatura initiala a probei si de cum a fost oferita aceasta caldura. Exista doua cai obisnuite prin care i se poate oferii caldura unui sistem, fie mentinand volumul constant, fie mentinand presiunea constanta. Bine inteles ca pot exista si alte cai de a oferii caldura unui sistem, dar acelea nu intra in sfera studiilor noastre.

Sa presupunem acum ca vom adauga caldura la o proba mentinuta la volum constant, adica dV = 0. Daca admitem acum ca q va reprezenta intotdeauna caldura absorbita de sistem, q va poate avea valori pozitive sau negative indicand sensul in care se "scurge" caldura. Daca q este pozitiv, caldura este intr-adevar absorbita de sistem. Pe de alta parte daca q are o valoare negativa aceasta reprezinta faptul ca sistemul cedeaza caldura vecinatatilor. Fie qV caldura adaugata (subscrisul V, indica faptul ca volumul nu variaza la adaugarea caldurii, ramanand constant). Fie, de asemenea, Δ modificare de temperatura. raportul, , depinde de material de cantitatea de material a probei si de temperatura. La limita, atunci cand qV tinde catre zero astfel incat si ΔT tinde catre zero, acest raport devine o derivata,

.       (11.1)

Acestei derivate i s-a atribuit simbolul de CV, si poate fi numita 'capacitate calorica la volum constant". De obicei se citeaza drept 'capacitate calorica molara'

.                 (11.2)

Ecuatia (11.1) se poate acum rearanja sub forma

.         (11.3)

Putem apoi integra aceasta ecuatie pentru a afla caldura implicata intr-o modificare finita la volum constant

                 (11.4)

Daca CV este , o constanta aproximativa pentru un domeniu definit de temperatura, atunci CV poate fi extras de sub semnul integrarii iar caldura la volum constant devine



.                  (11.5)

Sa urmam aceleasi etape exceptand faptul ca acum vom mentine presiunea constanta in locul volumului constant. Definitia initiala a capacitatii calorice la presiune constanta Cp devine

.                 (11.6)

capacitatea calorica molara analoga este,

.                 (11.7)

Ecuatia (11.6) poate fi acum rearanjata sub forma

,        (11.8)

care prin integrare duce la

.        (11.9)

Cand Cp este o constanta aproximativa integrala (11.9) devine

.                 (11.10)

Foarte frecvent domeniul de temperatura este suficient de mare pentru ca Cp sa nu poata fi privit ca o constanta. In aceste cazuri capacitatea calorica este corespunzatoare unei expresii polinomiale a lui T sau a unei functii similare. De exemplu unele tabele dau capacitatea calorica ca fiind

,       (11.11)

unde α , β , si γ sunt constante date in tabel. Prin aceasta dependenta de temperatura, capacitatea calorica la o presiune constanta va trebui sa urmeze calea urmatoarei integrale

.       (11.12 a, b)


Uneori se mai gasesc diferite forme pentru dependenta de temperatura a capacitatii calorice sub forma

.       (11.13)


Atunci cand veti calcula valori pentru   Cp trebuie sa fiti atenti la expresia utilizata pentru aceasta.







Politica de confidentialitate







creeaza logo.com Copyright © 2023 - Toate drepturile rezervate.
Toate documentele au caracter informativ cu scop educational.


Proiecte

vezi toate proiectele
PROIECT DE LECTIE CLASA A II-A, Educatie plastica, Tehnica marmorata
PROIECT DIDACTIC 5-7 ani activitate matematica - „Cum este si cum nu este aceasta piesa”
Proiect Circuite Digitale
Organizarea si conducerea procesului tehnologic proiectat

Lucrari de diploma

vezi toate lucrarile de diploma
LUCRARE DE DIPLOMA - Rolul asistentului medical in ingrijirea pacientului cu A.V.C.
Spatiul romanesc, intre diplomatie si conflict in Evul Mediu
Lucrare de diploma managementul firmei “diagnosticul si evaluarea firmei”
Lucrare de diploma Facultatea de Textile – Pielarie - Tehnologia confectiilor din piele si inlocuitori - PROIECTAREA CONSTRUCTIV TEHNOLOGICA A UNUI PR

Lucrari licenta

vezi toate lucrarile de licenta
Lucrare de licenta contabilitate si informatica de gestiune - politici si tratamente contabile privind leasingul (ias 17). prevalenta economicului asupra juridicului
Lucrare de licenta educatie fizica si sport - sistemul de selectie in jocul de handbal pentru copii de 10-11 ani in concordanta cu cerintele handbalul
Lucrare de licenta - cercetare si analiza financiara asupra deseurilor de ambalaje la sc.ambalaje sa
LUCRARE DE LICENTA - Asigurarea calitatii la firma Trans

Lucrari doctorat

vezi toate lucrarile de doctorat
Diagnosticul ecografic in unele afectiuni gastroduodenale si hepatobiliare la animalele de companie - TEZA DE DOCTORAT
Doctorat - Modele dinamice de simulare ale accidentelor rutiere produse intre autovehicul si pieton
LUCRARE DE DOCTORAT ZOOTEHNIE - AMELIORARE - Estimarea valorii economice a caracterelor din obiectivul ameliorarii intr-o linie materna de porcine

Proiecte de atestat

vezi toate proiectele de atestat
Lucrare atestat informatica - „administrarea gradinii botanice”
Lucrare atestat Tehnician operator tehnica de calcul - Sursa de tensiune cu tranzistoare npn
ATESTAT PROFESIONAL LA INFORMATICA - programare FoxPro for Windows
Proiect atestat tehnician in turism - carnaval la venezia

Legea lui Hess
Lucrul mecanic
ECUATIILE DE ECHILIBRU LA INTERFATA
Analiza Fourier a miscarii oscilatorii
Germinarea eterogena
CALCULUL MODAL CU CONSIDERAREA COMPORTARII SPATIALE A STRUCTURILOR
Conditii de trecere la suprafata de separatie dintre medii magnetice diferite
Temperatura Boyle



Termeni si conditii
Contact
Creeaza si tu