Creeaza.com - informatii profesionale despre


Evidentiem nevoile sociale din educatie - Referate profesionale unice




Acasa » referate » matematica
Convolutii si corelatii - functii matlab

Convolutii si corelatii - functii matlab




Convolutii si corelatii

Obiectivele lucrarii

1) Asimilarea functiilor MATLAB pentru realizarea convolutiilor, corelatiilor 1D si 2D;

Studiul algoritmilor pentru calculul convolutiilor si corelatiilor

3) Studiul interactiv al convolutiilor si transformatelor utilizand mediul DIDACTICIEL.

Desfasurarea lucrarii

Interpretarea polinomiala a convolutiei liniare si ciclice




Operatiile de convolutie liniara si ciclica, precum si de deconvolutie se pot interpreta prin prisma operatiilor cu polinoame. Sa consideram secventele 1D si polinoamele asociate de mai jos:

Conform definitiei: . Se obtine prin urmare:

Aceiasi coeficienti pot fi obtinuti ca urmare a produsului polinoamelor :

Functia MATLAB conv pentru calculul convolutiilor liniare 1D calculeaza de fapt acest produs. De exemplu, pentru a realiza convolutia secventelor se utilizeaza:

x=[1,2,3] ; h=[1,1] ; [y]=conv(x,h)

Deconvolutia poate fi realizata cu functia MATLAB deconv si poate fi vazuta ca rezultatul impartirii cu rest a polinoamelor Y si X.

[q,r]=deconv(y,x)

Si convolutia ciclica admite o interpretare polinomiala. Sa consideram secventele:

Conform definitiei: se obtine:

Acelasi rezultat se obtine ca rest al operatiei polinomiale: , adica ca rest al impartirii polinomului  prin .

Un exemplu de convolutie ciclica 1D este prezentat mai jos:

x=[1,2]; h=[3,4]; m=[1,0,-1];

[q,y]=deconv(fliplr(conv(x,h)),m)

Aceleasi consideratii sunt valabile si in cazul secventelor 2D. Astfel, in cazul convolutiei liniare:

Modul de calcul al primelor elemente ale secventei 2D este prezentat mai jos:

Rezultatul complet se obtine utilizand comenzile MATLAB:

x=[0,1,2;3,4,5] ; h=[1,0,1;1,0,1] ;

y=conv2(x,h)

Acelasi rezultat poate fi obtinut reprezentand convolutia ca produs de polinoame:

Reprezentand fiecare secventa 2D ca un polinom de doua variabile, se obtine:

Se poate deci scrie convolutia 2D sub forma polinomulului de doua variabile:

Teorema lui Plancherel

Pentru a verifica teorema lui Plancherel se poate considera urmatorul exemplu:

w = -pi:2*pi/255:pi;

x1 = [1 3 5 7 9 11 13 15 17];x2 = [1 -2 3 -2 1];

y = conv(x1,x2);h1 = freqz(x1, 1, w);

h2 = freqz(x2, 1, w);hp = h1.*h2;h3 = freqz(y,1,w);

subplot(2,2,1) ;plot(w/(2*pi),abs(hp));grid

title('Produsul spectrelor de amplitudine')

subplot(2,2,2) ;plot(w/(2*pi),abs(h3));grid

title('Spectrul de amplitudine a rezultatului convolutiei')

subplot(2,2,3) ;plot(w/(2*pi),angle(hp));grid

title('Suma spectrelor de faza')

subplot(2,2,4) ;plot(w/(2*pi),angle(h3));grid

title('Spectrul de faza a rezultatului convolutiei')

Calculul convolutiilor cu ajutorul transformatei Fourier

Sa se calculeze convolutia ciclica a doua secvente, si , de aceeasi perioada , utilizand .

x=[1,2]; h=[3,4];

X=fft(x);H=fft(h);Y=X.*H;

y=abs(ifft(Y))

Sa se utilizeze aceeasi metoda pentru a realiza convolutia ciclica 2D dintre secventele:



x=[1,2,3;4,5,6]; h=[1,0,1;1,0,1];

X=fft2(x); H=fft2(h);

Y=X.*H;

y=abs(ifft2(Y))

Mecanismul de calcul al convolutiei

Sa se calculeze pas cu pas convolutia a doua secvente discrete. Originea celor doua functii este presupusa la .

x=ones(3,1); h=exp(-[1:10]);

Ly=length(x)+length(h)-1;

lh=length(h);lx=length(x); y=zeros([Ly,1]);

xf=fliplr(x);

disp(['Apasati pe orice tasta pentru a calcula convolutia']);

for i=1:1:Ly

indlo=max(0,i-lx); indhi=min(i-1,lh-1);

for j=indlo:indhi

y(i)=h(j+1)*x(i-j)+y(i);

end

subplot(311);stem(-lx+i:1:i-1,xf);ylabel('x in oglinda');

lim1= max(lh,lx) ;lim2= min(min(min(x),min(h)),0) ;

lim3= max(max(x),max(h)) ;

axis([-lx,lim1,lim2,lim3]);

subplot(312);stem(0:1:lh-1,h);ylabel('h');

axis([-lx,lim1,lim2,lim3]);

subplot(313);stem(0:1:Ly-1,y);ylabel('y');

pause

end

Convolutia, corelatia si filtrajul adaptat

Sa se scrie un program care sa arate ca operatia de convolutie realizata de un filtru adaptat este echivalenta cu corelatia dintre semnalul cu care acesta este adaptat si semnalul de intrare.

Se va considera semnalul de intrare:

si filtrul adaptat caracterizat prin functia pondere:

h = [3 2 1 -2 1 0 -4 0 3];

x = [1 -2 3 -4 3 2 1];

xa = fliplr(h);

y1 = conv(h,x) ;

y2 = filter(h,1,[x zeros(1,length(x)+1)]);

y3 = xcorr(x,xa);

subplot(311);stem(y1); ylabel('Amplitudine');

title('Iesire obtinuta prin convolutie'); grid;

subplot(312);stem(y2); ylabel('Amplitudine');

title('Iesire obtinuta prin filtraj'); grid;

subplot(313);stem(y1)

xlabel('Index temporal n'); ylabel('Amplitudine');

title('Iesire obtinuta prin corelatie'); grid;

Studiul operatorilor de convolutie si corelatie utilizand mediul DIDACTICIEL

1) Se lanseaza DIDACTICIEL-ul prin introducerea comenzii:

didact

2) Se studiaza interactiv operatorii de convolutie si corelatie cu ajutorul meniurilor definite in:

Math Tools

Tema

Se dau secventele 1D:

Calculati analitic convolutia lor ciclica pentru si verificati rezultatul in MATLAB.








Politica de confidentialitate

.com Copyright © 2020 - Toate drepturile rezervate.
Toate documentele au caracter informativ cu scop educational.


Proiecte

vezi toate proiectele
 SCHITA DE PROIECT DIDACTIC GEOGRAFIE CLASA: a IX-a - Unitatile majore ale reliefului terestru
 PROIECT DIDACTIC 5-7 ani Educatia limbajului - Cate cuvinte am spus?
 Proiect atestat Tehnician Electronist - AMPLIFICATOARE ELECTRONICE
 Proiect - masurarea si controlul marimilor geometrice

Lucrari de diploma

vezi toate lucrarile de diploma
 Lucrare de diploma - eritrodermia psoriazica
 ACTIUNEA DIPLOMATICA A ROMANIEI LA CONFERINTA DE PACE DE LA PARIS (1946-1947)
 LUCRARE DE DIPLOMA MANAGEMENT - MANAGEMENTUL CALITATII APLICAT IN DOMENIUL FABRICARII BERII. STUDIU DE CAZ - FABRICA DE BERE SEBES
 Lucrare de diploma tehnologia confectiilor din piele si inlocuitor - proiectarea constructiv tehnologica a unui produs de incaltaminte tip cizma scurt

Lucrari licenta

vezi toate lucrarile de licenta
 LUCRARE DE LICENTA CONTABILITATE - ANALIZA EFICIENTEI ECONOMICE – CAI DE CRESTERE LA S.C. CONSTRUCTIA S.A TG-JIU
 Lucrare de licenta sport - Jocul de volei
 Lucrare de licenta stiintele naturii siecologie - 'surse de poluare a clisurii dunarii”
 LUCRARE DE LICENTA - Gestiunea stocurilor de materii prime si materiale

Lucrari doctorat

vezi toate lucrarile de doctorat
 Diagnosticul ecografic in unele afectiuni gastroduodenale si hepatobiliare la animalele de companie - TEZA DE DOCTORAT
 Doctorat - Modele dinamice de simulare ale accidentelor rutiere produse intre autovehicul si pieton
 LUCRARE DE DOCTORAT ZOOTEHNIE - AMELIORARE - Estimarea valorii economice a caracterelor din obiectivul ameliorarii intr-o linie materna de porcine

Proiecte de atestat

vezi toate proiectele de atestat
 PROIECT ATESTAT MATEMATICA-INFORMATICA - CALUTUL INTELIGENT
 Proiect atestat Tehnician Electronist - AMPLIFICATOARE ELECTRONICE
 ATESTAT PROFESIONAL LA INFORMATICA - programare FoxPro for Windows
 ATESTAT PROFESIONAL TURISM SI ALIMENTATIE PUBLICA, TEHNICIAN IN TURISM




Ecuatii diferentiale lineare de ordinul intai
UTILIZAREA MATEMATICII CA INSTRUMENT DE LUCRU LA ELABORAREA MODELELOR IN VEDEREA FUNDAMENTARII METODELOR DE ANALIZA SI EVALUARE A RISCURIULOR PROFESIO
Spatiu vectorial
Functii diferentiabile
Binomul lui Newton. Puterea unui polinom
Caracteristicile numerice ale unei variabile aleatoare continue
Fise de lucru CALCUL ALGEBRIC
Premii definite prin functii de pierdere




Termeni si conditii
Contact
Creeaza si tu